trr(他日若淋雪此生也算共白头整首诗)

币安下载

Binance币安交易所

全球最大加密货币交易所,注册100%可领取100USDT奖励!通过本站注册不仅可以享受手续费折扣同时有机会获得币安周边

点击注册 更多线路

更多交易所入口

一站式注册各大交易所、点击进入加密世界、永不失联,币安Binance/欧易OKX/GATE.IO芝麻开门/Bitget/抹茶MEXC/火币Huobi

点击进入 永不失联


澳元和美元符号怎么区分


                
美元和澳元都是$。这个没有办法区分。但是有时候会写成aud和usd这样就可以区分了。前面是澳元,后面是美元。也有时候会写成$a和$us。
aurrp(inc.gst)$4,499就是澳元正常零售价格包括gst,一共4499。这个里面gst是$409。
rrp是regularretailprice就是正常零售价格。后面的inc.gst是包含gst
gst是goodsandservicetax的缩写。就是商品,服务税。基本上是所有的非必需品都是10%。

求文言文(人琴俱亡)翻译和重点字词 急 谁的好,就给采纳 快!!!_百度...


                
原文
王子猷(yóu)、子敬俱病笃(dǔ),而子敬先亡。子猷问左右:“何以都(dōu)不闻消息?此已丧(sàng)矣。”语时了(liǎo)不悲。便索舆(yú)来奔丧(sāng),都不哭。
子敬素好琴,便径入坐灵床上,取子敬琴弹,弦既不调(tiáo),掷地云:“子敬子敬,人琴俱亡。” 因恸(tòng)绝良久,月余亦卒(zú)。
4节奏划分
王子猷、子敬俱/病笃,而子敬/先亡。子猷问左右:“何以/都不闻消息?此/已丧矣。”语时/了不悲。便/索舆/来奔丧,都/不哭。 子敬/素好琴,便径入/坐灵床上,取/子敬琴/弹,弦/既/不调,掷地/云:“子敬子敬,人琴俱亡。” 因/恸绝良久,月余/亦卒。
5注释
人琴俱亡:形容看到遗物,怀念死者的悲伤心情。常用来比喻对知己、亲友去世的悼念之情。
王子猷:即王徽之,字子猷,王羲之的第五个儿子。
子敬:即王献之,字子敬,王羲之的第七个儿子。
俱:副词,表范围,都。
笃:(病)重。
而:表承接,不译。
左右:手下的人。
何以:即“以何”,为什么。
都:总,竟。
此:这。
矣:语气助词,表肯定语气,可译为“了”。
语:动词,说话。
了:完全。
便:就。
索:要。
舆:车,轿子。
奔丧:原指从外地急忙赶回去料理长辈亲属的丧事,这里指到王子敬家去看望丧事。
素:向来,一向。
好:喜欢。
琴:动词,弹琴。
便:就。
径:直往。
灵床:停放尸体的床铺。
既:已经。
调:协调。
掷:扔。
俱:全,都。
亡:死亡,不存在。
因:于是。
恸:痛哭。
绝:气息终止,死亡。
良:很。
余:整数的零头。
亦:也。
卒:死。
6译文
王子猷、王子敬都病得很重,子敬先去世了。子猷问手下的人说:“为什么总听不到(子敬的)消息呀?这(一定)是他已经死了。”他说话时完全不悲伤。于是(子猷)就要轿子来去参加丧事,一路上竟没有哭。子敬一向喜欢弹琴,(子猷)一直走进去坐在灵床旁,拿过子敬的琴来弹,几根琴弦的声音已经不协调了,(子猷)把琴扔在地上说:“子敬啊,子敬啊,你的人和琴都死了!”于是痛哭了很久,几乎要昏过去。过了一个多月,(子猷)也去世了。[2]

trr是谁 trr是什么意思


                

trr是谁?今天微博热搜出现了trr,很多人不知道是什么意思,一脸懵逼。其实,trr就是田冉冉,粉丝撕逼事件,一夜不睡觉陪聊撕逼,这也能上热搜,大概这才叫微博之夜吧!下面,我们来看看田冉冉撕逼事件经过吧!

  

trr是谁

田冉冉,因为撕逼上热搜了。

田冉冉是谁?一个说追星的是下等人的上等人 冉和下等人撕 简单来说郭老师是导火索,田冉冉说追星的都是下等人点火了。

  

trr是什么意思

插花大师讨厌郭老师艾特官方要让郭老师消失,镜仔虽然讨厌郭老师但他不支持这种“讨厌一个人就要让他消失”的行为

到这里我都觉得镜仔说的有点道理,毕竟你讨厌什么人大可以不看但不能让人家消失

撕了一阵之后田冉冉加入战场说追星的都是下等人

操?迷惑,她自己不也是从一只清单过来的吗凭什么说追星下等人?

  

田冉冉撕逼战场

插花大师撕郭老师,高镜撕插花大师,田冉冉出场说了句高镜怎么还在跟追星下等人撕,现在多对一打田冉冉,甩出古早时期聊天记录了 主战场如下:

李晓航微博:https://weibo.com/u/6668317059

田冉冉微博:https://weibo.com/u/6648727188?is_hot=1

金白开微博:https://weibo.com/u/6526446308?is_hot=1

瞳生共死微博:https://weibo.com/u/6618806075?is_hot=1

奥比岛微博:https://weibo.com/u/6605478949?is_hot=1

展台微博:https://weibo.com/u/6719460477?is_hot=1

坐地废话微博:https://weibo.com/u/2897308811?is_hot=1

护孩达人微博:https://weibo.com/u/6448157157?is_hot=1(已经退圈了)

高镜微博:https://weibo.com/u/5585316677?is_hot=1(晚间没参加,往前翻能看到故事的起源)

我也没想到大半夜能看到这种盛况,不知道说什么就感谢郭老师吧

谁能想到偶妹研究生都毕业了,网红们因为郭老师欢聚一堂,李晓航田冉冉打了半个小时的太极,金姐加入之后节奏瞬间起来了

  

网友评论

田冉冉太好笑了 一晚上没睡就为了证明自己和曾经一起追星的小姐妹已经不一样不属于一个圈子了 可是你还不明白吗?你一个晚上都不敢睡就为了跟他们掰扯陈年旧账 恰恰能说明你跟他们本质就是一样的啊 这跟追星根本没关系 大家都是为了自己在网络上那一亩三分地的利益和话语权熬夜撕逼的人


高手来!!! vista系统开机出来Tray APP安装程序怎么办?怎样取消啊?它是...


                
一,在运行中msconfig看一下是否有此启动项
二,如果你是没有卸载干净的话,在运行regedit中crtl+f查找TrayApp的项,之后删除
三,用优化大师清理一下系统

计算机组成原理 题目


                
现场总线是应用在生产现场,在微机化测量控制设备之间实现双向串行多节点数字通信的系统,也被称为开放式、数字化、多点通信的底层控制网络。现场总线控制系统既是一个开放通信网络,又是一种全分布控制系统。自80年代以来,有几种现场总线技术已逐渐形成,在一些特定的应用领域显示了各自的优势。
  
    对用户而言,如何选择适合自己需要的现场总线,来满足工业控制中的实时要求。这需要了解每种现场总线的特点,尤其是数据链路层的通信介质访问控制方式。
    
    按照对时间确定性的支持,现场总线通信介质访问控制方式主要分为两大类:一类采用事件触发方式,它不直接支持时间确定性,多数采用随机载波监听方式(CSMA),具有代表性的有CAN和LON等;另一类采用时间触发方式,它直接支持时间确定性,
  
    通常采用令牌方式,它又可以进一步分为:(1)集中式令牌,具有代表性的有WorldFIP和FF等;(2)分布式令牌,具有代表性的有PROFFBUS等;(3)虚拟令牌,具有代表性的有P-NET等。
  
    为此,本文针对目前比较流行的,且通信介质访问控制方式具有代表性的4种现场总线——LON、CAN、PBOFIBUS和FF进行简单的介绍,特别是对其通信介质访问控制方式进行了较详细的描述。

2、  LON(LocalE Operation Networks)

    美国Echelon公司于1991年推出的局部操作网络,在组建分布式监控网络方面具有优越性。LON技术适合于低层次工业网络,在住宅、楼宇管理、暖通、水处理、食品加工、机器控制与监视等领域被广泛接受。
  
    LONWORKS采用的LonTalk通信协议遵循ISO/OSI的全部7层模型。LonTalk协议被封装在称之为Neuron神经芯片中得以实现。Neuron神经芯片是IONWORKS的核心,内含3个8位CPC,分别为介质访问控制处理器,网络处理器和应用处理器。可见,Neuon神经芯片不仅作为LON总线的通信处理器,也作为采集和控制的通用处理器。
  
    LON支持多种拓扑结构,如总线型、星型、环型、混合型等,和多种传输介质,如双绞线、电力线、无线电波、红外线、光纤、同轴电缆和电源线等。可以根据不同的现场环境选择不同的收发器和介质。采用双绞线时,通信速率为78kbps/2700m/每段以节点,1.25Mbps/130m/每段64个节点。Motomla已开发出IS-78本安物理通道,使LON网络可以延伸到危险区域。

LON的通信介质访问控制方式为带预测P-坚持CSMA。当节点有信息要发送而试图占用通道时,首先在一个固定的周期Beta 1检测通道是否处于网络空闲。为了支持优先级,还要增加优先级时间片,优先级越高的所加的时间片越少。随后再根据网络积压参数BL产生一个随机等待时间片W’,W’为0到W之间的随机数,W=BL*16。当延时结束时,网络仍空闻,节点以概率p=1/W发送报文。此种方式在负载较轻时使介质访问延迟最小化,而在负载较重时使冲突最小化,但不能消除冲突。图2-1为LON的优先级带预测P-坚持CSMA概念示意图。
  
    LON有完整的7层协议,具备了局域网的基本功能,与异型网的兼容性比现存的任何现场总线都好。它还提供了与LAN的接口,从而实现二者的有机结合。同时,LON属于网络型系统,不适合于有大量数据需要采集,进行频繁处理的快速工业控制系统。

    LON通过具有通信与控制功能的Neuron神经芯片、收发器、电源、传感器和控制设备构成的网络节点,采用专用的编程工具Neuron C,利用所提供的开发工具:LonBuilder、NodeBuilder和LVS技术,可以快速、方便地开发节点和联网。

总之,当有大量的短消息需要通信应用时,LON是一个普及、低成本的总线系统。

3、  CAN( Controller Area Network)

    德国 BOSCH公司于1991年推出,用于汽车内部测量和执行部件之间的数据通信。主要应用于离散控制领域中的过程监测和控制,特别是工业自动化的低层监控,解决控制与测试之间的可靠和实时数据交换。
  
    CAN采用了ISO/OSI的3层模型:物理层、数据链路层和应用层。
  
    CAN支持的拓扑结构为总线型。传输介质为双绞线、同轴电缆和光纤等。采用双绞线通信时,速率为1Mbps/40m,50kbps/10km,节点数可达110个。
  
    CAN的通信介质访问方式为带优先级的 CS-MA/CA。采用多主竞争式结构:网络上任意节点均可以在任意时刻主动地向网络上其它节点发送信息,而不分主从,即当发现总线空闲时,各个节点都有权使用网络。在发生冲突时,采用非破坏性总线优先仲裁技术:当几个节点同时向网络发送信息时,运用逐位仲裁规则,借助帧中开始部分的标识符,优先级低的节点主动停止发送数据,而优先级高的节点可不受影响地继续发送信息,从而有效地避免了总线冲突,使信息和时间均无损失。例如,规定0的优先级高,在节点发送信息时,CAH总线做与运算。每个节点都是边发送信息边检测网络状态,当某一个节点发送1而检测到0时,此节点知道有更高优先级的信息在发送,它就停止发送信息,直到再一次检测到网络空闲。图3-1为A、B、C、D4个节点同时发送信息,最后优先级高的节点D有权发送信息,其它节点主动停止发送数据。  CAN的传输信号采用短帧结构(有效数据最多为8个字节),和带优先级的CSMA/CA的通信介质访问方式,对高优先级的通信请求来说,在1Mbps的通信速率时,最长的等待时间为0.15ms,完全可以满足现场控制的实时性要求。
  
    CAN突出的差错检验机理,如5种错误检测、出错标定和故障界定;CAN传输信号为短帧结构,因而传输时间短,受干扰概率低。这些保证了出错率极低,剩余错误概率为报文出错率的4.7x10-11。另外,CAN节点在严重错误的情况下,具有自动关闭输出的功能,以使总线上其它节点的操作不受其影响。可见,CAN具有高可靠性。
  
    CAN的通信协议主要由CAN控制器完成。CAN控制器主要由实现CAN总线通信协议部分和微控制器接口部分电路组成。通过简单的连接即可完成CAN总线协议的物理层和数据链路层的所有功能,应用层功能由微控制器完成。CAN总线上的节点既可以是基于微控制器的智能节点,也可以是具有CAN接口的I/O器件。  

    总之,CAN总线的数据通信具有突出的可靠性、实时性和灵活性。CAN作为现场设备级的通信总线,同其它总线相比,具有很高的可靠性和性能价格比。

4、  PROFIBUS(Process Fieldbus)

    1986年,德国开始制定。它由3部分组成:Profibus-DP (Decentralized Periphery,分布式外设),Profibus-FMS(Fieldbus Message Specification,现场总线信息规范)和Profibus-PA(Process Automation,过程自动化)。不同的部分针对不同的应用场合,因此和Profibus应用领域十分广泛。
  
    Profibus以ISO/OSI模型为基础,取其物理层和数据链路层。FMS还采用了应用层。DP和FMS使用同样的传输技术和统一的总线访问协议,因此二系统可在同一根总线上混合互操作。通过段锅台器或链接器,使PA系统很方便地集成到皿网络。
  
    DP和FMS有两种传输技术:一种是RS-485,采用屏蔽双绞线,拓扑结构为总线型,通信速率为9.6kbps/1200m,12Mbps/100m,每段最多节点数为32,不支持总线供电和本安;另一种是采用光纤,用于电磁兼容性要求高和长距离要求的场合。 PA采用IEC1158-2传输技术,用屏蔽双绞线,拓扑结构为总线型或树型,通信速率为31.25kbps/1900m,每段最多节点数为32,支持总线供电和本安。
  
    Profibus的通信介质访问控制方式为分布式令牌方式(混合介质存取)。主节点之间为令牌环传递方式,主节点与从节点之间为主从轮询方式。当主节点得到令牌后,允许它在一定的时间内与从节点和/或其它主节点通信。令牌在所有主节点中循环一周的最长时间TTR(设定周期)是事先预定的,决定了各主节点的令牌具体保持时间的长短。主节点之间传输数据必须保证在事先定义的时间间隔内主节点有充足的时间完成通信任务,主节点与从节点之间的数据交换要尽可能快且简单,地完成数据的实时传输。按这种方式,完成周期性与非周期性的数据交换。

为此,profibus的介质访问控制MAC协议设置了两类时钟计时器:一类是令牌运行周期计时器,用于令牌的实际运行周期TRR计时;另一类是持牌计时器,用于主节点令牌保持时间TTH计时。当令牌到达某个主节点时,此节点的周期计时器开始计时。
  
    当令牌又一次到达此主节点时,MAC从把周期计时器的TRR值与设定周期值TTR的差值赋给持牌计时器,即TTH=TTR-TRR,持牌计时器根据该值控制信息的传送。
  
    在持牌计时器控制信息发送时,如果令牌到达超时,即TTH  
    Profibus-DP主要用于对时间要求苛刻的分散外围间的高速数据传输,解决分散I/O问的通信,适合于加工自动化领域,具有高效低成本。Profibus-PA,队主要用于流程工业自动化,对安全性要求高和由总线供电的场合。Profibus-FMS主要用于解决车间级通用性的通信任务,完成控制器和智能现场设备之间的通信以及控制器之间的信息交换,提供了大量的通信服务(主要是针对主节点之间的通信)。

求文言文(人琴俱亡)翻译和重点字词 急 谁的好,就给采纳 快!!!_百度...


                
原文
王子猷(yóu)、子敬俱病笃(dǔ),而子敬先亡。子猷问左右:“何以都(dōu)不闻消息?此已丧(sàng)矣。”语时了(liǎo)不悲。便索舆(yú)来奔丧(sāng),都不哭。
子敬素好琴,便径入坐灵床上,取子敬琴弹,弦既不调(tiáo),掷地云:“子敬子敬,人琴俱亡。” 因恸(tòng)绝良久,月余亦卒(zú)。
4节奏划分
王子猷、子敬俱/病笃,而子敬/先亡。子猷问左右:“何以/都不闻消息?此/已丧矣。”语时/了不悲。便/索舆/来奔丧,都/不哭。 子敬/素好琴,便径入/坐灵床上,取/子敬琴/弹,弦/既/不调,掷地/云:“子敬子敬,人琴俱亡。” 因/恸绝良久,月余/亦卒。
5注释
人琴俱亡:形容看到遗物,怀念死者的悲伤心情。常用来比喻对知己、亲友去世的悼念之情。
王子猷:即王徽之,字子猷,王羲之的第五个儿子。
子敬:即王献之,字子敬,王羲之的第七个儿子。
俱:副词,表范围,都。
笃:(病)重。
而:表承接,不译。
左右:手下的人。
何以:即“以何”,为什么。
都:总,竟。
此:这。
矣:语气助词,表肯定语气,可译为“了”。
语:动词,说话。
了:完全。
便:就。
索:要。
舆:车,轿子。
奔丧:原指从外地急忙赶回去料理长辈亲属的丧事,这里指到王子敬家去看望丧事。
素:向来,一向。
好:喜欢。
琴:动词,弹琴。
便:就。
径:直往。
灵床:停放尸体的床铺。
既:已经。
调:协调。
掷:扔。
俱:全,都。
亡:死亡,不存在。
因:于是。
恸:痛哭。
绝:气息终止,死亡。
良:很。
余:整数的零头。
亦:也。
卒:死。
6译文
王子猷、王子敬都病得很重,子敬先去世了。子猷问手下的人说:“为什么总听不到(子敬的)消息呀?这(一定)是他已经死了。”他说话时完全不悲伤。于是(子猷)就要轿子来去参加丧事,一路上竟没有哭。子敬一向喜欢弹琴,(子猷)一直走进去坐在灵床旁,拿过子敬的琴来弹,几根琴弦的声音已经不协调了,(子猷)把琴扔在地上说:“子敬啊,子敬啊,你的人和琴都死了!”于是痛哭了很久,几乎要昏过去。过了一个多月,(子猷)也去世了。[2]

什么叫二极管的反向恢复时间,希望说下原理


                

反向恢复时间(trr),它的定义是:电流通过零点由正向转换成反向,再由反向转换到规定值的时间间隔。它是衡量高频续流及整流器件性能的重要技术指标。


原理:反向恢复过程是由电荷存储效应引起的,反向恢复时间就是正向导通时PN结存储的电荷耗尽所需要的时间。假设为Trr,若有一周期为T1的连续PWM波通过二极管,当Trr>T1时,二极管反方向时就不能阻断此PWM波,起不到开关作用。二极管的反向恢复时间由Datasheet提供。


扩展资料


快恢复二极管的特点:快恢复二极管的最主要特点是它的反向恢复时间(trr)在几百纳秒(ns)以下,超快恢复二极管甚至能达到几十纳秒。反向恢复时间快使二极管在导通和截止之间迅速转换,可获得较高的开关速度,提高了器件的使用频率并改善了波形。


开关从导通状态向截止状态转变时,二极管或整流器在二极管阻断反向电流之前需要首先释放存储的电荷,这个放电时间被称为反向恢复时间,在此期间电流反向流过二极管。即从正向导通电流为0时到进入完全截止状态的时间。


参考资料来源:百度百科——反向恢复时间

目录[+]