比特币加密技术(比特币加密算法)

币安下载

Binance币安交易所

全球最大加密货币交易所,注册100%可领取100USDT奖励!通过本站注册不仅可以享受手续费折扣同时有机会获得币安周边

点击注册 更多线路

更多交易所入口

一站式注册各大交易所、点击进入加密世界、永不失联,币安Binance/欧易OKX/GATE.IO芝麻开门/Bitget/抹茶MEXC/火币Huobi

点击进入 永不失联


高中生如何理解比特币加密算法


                

加密算法是数字货币的基石,比特币的公钥体系采用椭圆曲线算法来保证交易的安全性。这是因为要攻破椭圆曲线加密就要面对离散对数难题,目前为止还没有找到在多项式时间内解决的办法,在算法所用的空间足够大的情况下,被认为是安全的。本文不涉及高深的数学理论,希望高中生都能看懂。

  

密码学具有久远的历史,几乎人人都可以构造出加解密的方法,比如说简单地循环移位。古老或简单的方法需要保密加密算法和秘钥。但是从历史上长期的攻防斗争来看,基于加密方式的保密并不可靠,同时,长期以来,秘钥的传递也是一个很大的问题,往往面临秘钥泄漏或遭遇中间人攻击的风险。

  

上世纪70年代,密码学迎来了突破。Ralph C. Merkle在1974年首先提出非对称加密的思想,两年以后,Whitfield Diffie和Whitfield Diffie两位学者以单向函数和单向暗门函数为基础提出了具体的思路。随后,大量的研究和算法涌现,其中最为著名的就是RSA算法和一系列的椭圆曲线算法。

  

无论哪一种算法,都是站在前人的肩膀之上,主要以素数为研究对象的数论的发展,群论和有限域理论为基础。内容加密的秘钥不再需要传递,而是通过运算产生,这样,即使在不安全的网络中进行通信也是安全的。密文的破解依赖于秘钥的破解,但秘钥的破解面临难题,对于RSA算法,这个难题是大数因式分解,对于椭圆曲线算法,这个难题是类离散对数求解。两者在目前都没有多项式时间内的解决办法,也就是说,当位数增多时,难度差不多时指数级上升的。

  

那么加解密如何在公私钥体系中进行的呢?一句话,通过在一个有限域内的运算进行,这是因为加解密都必须是精确的。一个有限域就是一个具有有限个元素的集合。加密就是在把其中一个元素映射到另一个元素,而解密就是再做一次映射。而有限域的构成与素数的性质有关。

  

前段时间,黎曼猜想(与素数定理关系密切)被热炒的时候,有一位区块链项目的技术总监说椭圆曲线算法与素数无关,不受黎曼猜想证明的影响,就完全是瞎说了。可见区块链项目内鱼龙混杂,确实需要好好洗洗。

  

比特币及多数区块链项目采用的公钥体系都是椭圆曲线算法,而非RSA。而介绍椭圆曲线算法之前,了解一下离散对数问题对其安全性的理解很有帮助。

  

先来看一下 费马小定理

  

原根 定义:
   设(a, p)=1 (a与p互素),满足

                                          

的最下正整数 l,叫作a模p的阶,模p阶为(最大值)p-1的整数a叫作模p的原根。

  

两个定理:

                                          

基于此,我们可以看到,{1, 2, 3, … p-1} 就是一个有限域,而且定义运算 gi (mod p), 落在这个有限域内,同时,当i取0~p-2的不同数时,运算结果不同。这和我们在高中学到的求幂基本上是一样的,只不过加了一层求模运算而已。

  

另一点需要说明的是,g的指数可以不限于0~p-2, 其实可以是所有自然数,但是由于

                                          

所以,所有的函数值都是在有限域内,而且是连续循环的。

  

离散对数定义:
   设g为模p的原根,(a,p) = 1,

                                          

我们称 i 为a(对于模p的原根g)的指数,表示成:

                                          

这里ind 就是 index的前3个字母。
   这个定义是不是和log的定义很像?其实这也就是我们高中学到的对数定义的扩展,只不过现在应用到一个有限域上。

  

但是,这与实数域上的对数计算不同,实数域是一个连续空间,其上的对数计算有公式和规律可循,但往往很难做到精确。我们的加密体系里需要精确,但是在一个有限域上的运算极为困难,当你知道幂值a和对数底g,求其离散对数值i非常困难。

  

当选择的素数P足够大时,求i在时间上和运算量上变得不可能。因此我们可以说i是不能被计算出来的,也就是说是安全的,不能被破解的。

  

比特币的椭圆曲线算法具体而言采用的是 secp256k1算法。网上关于椭圆曲线算法的介绍很多,这里不做详细阐述,大家只要知道其实它是一个三次曲线(不是一个椭圆函数),定义如下:

                                          

那么这里有参数a, b;取值不同,椭圆曲线也就不同,当然x, y 这里定义在实数域上,在密码体系里是行不通的,真正采用的时候,x, y要定义在一个有限域上,都是自然数,而且小于一个素数P。那么当这个椭圆曲线定义好后,它反应在坐标系中就是一些离散的点,一点也不像曲线。但是,在设定的有限域上,其各种运算是完备的。也就是说,能够通过加密运算找到对应的点,通过解密运算得到加密前的点。

  

同时,与前面讲到的离散对数问题一样,我们希望在这个椭圆曲线的离散点阵中找到一个有限的子群,其具有我们前面提到的遍历和循环性质。而我们的所有计算将使用这个子群。这样就建立好了我们需要的一个有限域。那么这里就需要子群的阶(一个素数n)和在子群中的基点G(一个坐标,它通过加法运算可以遍历n阶子群)。

  

根据上面的描述,我们知道椭圆曲线的定义包含一个五元祖(P, a, b, G, n, h);具体的定义和概念如下:

  

P:  一个大素数,用来定义椭圆曲线的有限域(群)
   a, b:  椭圆曲线的参数,定义椭圆曲线函数
   G:  循环子群中的基点,运算的基础
   n:  循环子群的阶(另一个大素数,   h:子群的相关因子,也即群的阶除以子群的阶的整数部分。

  

好了,是时候来看一下比特币的椭圆曲线算法是一个怎样的椭圆曲线了。简单地说,就是上述参数取以下值的椭圆曲线:

  

椭圆曲线定义了加法,其定义是两个点相连,交与图像的第三点的关于x轴的对称点为两个点的和。网上这部分内容已经有很多,这里不就其细节进行阐述。

  

但细心的同学可能有个疑问,离散对数问题的难题表现在求幂容易,但求其指数非常难,然而,椭圆曲线算法中,没有求幂,只有求乘积。这怎么体现的是离散对数问题呢?

  

其实,这是一个定义问题,最初椭圆曲线算法定义的时候把这种运算定义为求和,但是,你只要把这种运算定义为求积,整个体系也是没有问题的。而且如果定义为求积,你会发现所有的操作形式上和离散对数问题一致,在有限域的选择的原则上也是一致的。所以,本质上这还是一个离散对数问题。但又不完全是简单的离散对数问题,实际上比一般的离散对数问题要难,因为这里不是简单地求数的离散对数,而是在一个自定义的计算上求类似于离散对数的值。这也是为什么椭圆曲线算法采用比RSA所需要的(一般2048位)少得多的私钥位数(256位)就非常安全了。


比特币的核心技术包括哪些


                
比特币的核心技术包括1、非对称加密技术  2、点对点传输技术  3、哈希现金算法机制。
1.非对称加密技术和对称加密技术最大的不同就是有了公钥和私钥之分。非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。公钥是公开的,私钥是保密的。  由于不涉及私钥的传输,整个传输过程就变得安全多了。后来又出现了具备商业实用性的非对称RSA加密算法以及后来的椭圆曲线加密算法(ECC),这些都奠定了加密算法理论的基础,但是美国国家安全局NSA最初认为这些技术对国家安全构成威胁,所以对这些技术进行了严密的监控,知道20世纪90年代末NSA才放弃了对这些技术的监控,这些非对称技术才最终走入了了公众的视野。这项技术对应到比特币场景中就是比特币的地址和私钥。
2.点对点传输技术顾名思义,就是无需中心服务器、个体之间可以相互传输信息的技术,P2P网络的重要目标就是让所有客户端都能提供资源,包括宽带、存储空间和计算能力。  对应到比特币网络中就是利用点对点的技术实现真正的去中心化。
3.哈希现金算法机制就是让那些制造垃圾邮件的人付出相应的代价!发送者需要付出一定的工作量,比如说哈希运算,几秒钟时间对于普通用户不算什么,但对于垃圾邮件的发送者每封邮件都要花几秒钟的时间,这样的成本是没有办法负担的。同时每次运算都会盖上一个独一无二的时间戳,这样就能保证邮件发送方不能重复使用一个运算结果。  对于比特币而言也是同样的道理,如何保证一笔数字货币没有被多次消费(Double Spending),就类似于验证一封邮件没有被多次发送,所以就要保证每一笔交易顺利完成,必须要付出一定的工作量(proof of Work),并且在完成交易时盖上一个时间戳表示交易完成的时间。

什么是比特币加密技术?


                
比特币和区块链的诞生需要依赖于很多核心技术的突破:一是拜占庭容错技术;二是非对称加密技术;三是点对点支付技术。下面会依次介绍。
拜占庭容错技术
比特币和区块链诞生的首要难点在于如何创建分布式共识机制,也就是菜斯利·兰伯特等人1982年提出的拜占庭将军问题。所谓拜占庭将军问题是指,把战争中互不信任的各城邦军队如何达成共识并决定是否出兵的决策过程。延伸至计算机领域,试图创建具有容错性的分布式系统,即使部分节点失效仍可确保系统正常运行,也可让多个基于零信任基础的节点达成共识,并确保信息传递的一致性。
中本聪所提到的“拜占庭将军问题”解决方法起始于亚当﹒拜克在1997年发明的哈希现金算法机制,起初该设计是用于限制垃圾邮件发送与拒绝服务攻击。2004年,密码朋克运动早期和重要成员哈尔·芬尼将亚当﹒拜克的哈希现金算法改进为可复用的工作量证明机制。他们的研究又是基于达利亚·马凯与迈克尔·瑞特的学术成果:拜占庭容错机制。正是哈尔·芬尼的可复用的工作量证明机制后来成为比特币的核心要素之一。哈尔·芬尼是中本聪的最早支持者,同时也是第一笔比特币转账的接受者,在比特币发展的早期与中本聪有大量互动与交流。
非对称加密技术
比特币的非对称加密技术来源于以下几项密码学的技术创新:1976年,Sun公司前首席安全官Whitfield Diffie与斯坦福大学教授Martin Hell,在开创性论文《密码学的新方向》首次提出公开钥匙密码学的概念,发明了非对称加密算法。1978年省理工学院的伦纳德·阿德曼、罗纳德·李维斯特、阿迪·萨莫尔三名研究人员,共同发明了公开钥匙系统“RSA”可用于数据加密和签名,率先开发第一个具备商业实用性的非对称RSA加密算法。1985年,Neal Koblitz和Victor Miller俩人,首次提出将椭圆曲线算法(ECC),应用于密码学,并建立公钥加密的算法,公钥密码算法的原理是利用信息的不对称性,公钥对应的是私钥,私钥是解开所有信息的钥匙,公钥可以由私钥反推算出。ECC能够提供比RSA更高级别的安全。比特币使用的就是椭圆曲线算法公钥用于接收比特币,而私钥则是比特币支付时的交易签名。这些加密算法奠定了当前非对称加密理论的基础,被广泛应用于网络通信领域。但是,当时这些加密技术发明均在NSA严密监视的视野之内。NSA最初认为它们对国家安全构成威胁,并将其视为军用技术。直到20世纪90年代末,NSA才放弃对这些非对称加密技术的控制,RSA算法、ECC算法等非对称加密技术最终得以走进公众领域。
不过,中本聪并不信任NSA公布的加密技术,在比特币系统中没有使用RSA公钥系统,原因除了ECC能够提供比RSA更高级别的安全性能外,还担心美国安全部门在RSA留有技术后门。2013年9月,斯诺登就曾爆料NSA采用秘密方法控制加密国际标准,比特币采用的RSA可能留有后门,NSA能以不为人知的方法弱化这条曲线。所幸的是,中本聪神一般走位避开了RSA的陷阱,使用的加密技术不是NSA的标准,而是另一条鲜为人知的椭圆曲线,这条曲线并不在美国RSA的掌握之下。全世界只有极少数程序躲过了这一漏洞,比特币便是其中之一。

(四)比特币加密原理


                

这篇文章将会讲解比特币的加密原理。比特币之所以这么安全,就是因为它的加密机制。

  

哈希又称为散列,简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。

  

那么怎么保证原文没用被第三方篡改呢?答案就是数字签名。
   这个类似于现实中的签名,就是在信息后面加上另一段内容,作为发送者的证明并证明信息没有被篡改。

                                          

如上图所示,

  

分析: 假设C截取信息,他想篡改内容。首先签名无法篡改,因为他没有发送方的私钥,如果用自己的私钥进行签名,那么接收方用发送方的公钥解密时是解不开的。所以他只能篡改密文。但接收方解出密文并进行哈希运算后得到的摘要必然和原来的摘要不同,而用发送方的公钥解密出签名得到的摘要肯定不会被篡改,所以两次摘要就会出现不一致,就能确认内容被篡改了。

  

非对称加密和数字签名这一块稍微有点绕,不过你看懂了之后一定会说一句:中本聪666!!!

  

To be continued...


比特币的原理


                
比特币交易平台的盈利方式是手续费,也有其它的增值收费模式。
比特币(Bitcoin)是一种基于去中心化,采用点对点网络与共识主动性,开放源代码,以区块链作为底层技术的虚拟加密货币。
由中本聪在2008年提出,2009年诞生,与其他虚拟货币最大的不同,是其总数量非常有限,具有的稀缺性。
与所有的货币不同,比特币不依靠特定货币机构发行,它依据特定算法,通过大量的计算产生,比特币经济使用整个P2P网络中众多节点构成的分布式数据库来确认并记录所有的交易行为,并使用密码学的设计来确保货币流通各个环节安全性。

目录[+]