临床试验中cov是什么意思
临床试验中cov是:coefficient?of variation--变异系数之意义。
变异系数是衡量资料中各观测值变异程度的另一个统计量。当进行两个或多个资料变异程度的比较时,如果度量单位与平均数相同,可以直接利用标准差来比较。
如果单位和(或)平均数不同时,比较其变异程度就不能采用标准差,而需采用标准差与平均数的比值(相对值)来比较。标准差与平均数的比值称为变异系数,记为C·V。变异系数可以消除单位和(或)平均数不同对两个或多个资料变异程度比较的影响。
临床试验中cov优缺点:
优点:比起标准差来,变异系数的好处是不需要参照数据的平均值。变异系数是一个无量纲量,因此在比较两组量纲不同或均值不同的数据时,应该用变异系数而不是标准差来作为比较的参考。
缺陷:当平均值接近于0的时候,微小的扰动也会对变异系数产生巨大影响,因此造成精确度不足。变异系数无法发展出类似于均值的置信区间的工具。
cov等于0说明什么
协方差为0是不相关,独立可推出不相关,但是不相关不能推出独立。
协方差Cov(X,Y)是描述二维随机变量两个分量间相互关联程度的一个特征数,如果将协方差相应标准化变量就得到相关系数Corr(X,Y)。从而可以引进相关系数Corr(X,Y)去刻画二维随机变量两个分量间相互关联程度。且事实表明,相关系数明显被广泛应用。本文的目的在于从协方差与相关系数的关系的角度去探讨协方差与相关系数的优缺点,并具体介绍协方差和相关系数这两个描述二维随机变量间相关性的特征数。
条码秤里的no cov是啥意思
条码秤是热敏打印的,平时使用的是热敏不干胶标签,这种标签是每一张都独立的个体,但是小票的话是连续纸,需要对条码称进行设置才能打印小票。具体的设置方法,不同的条码秤设置方法不同。青岛艾讯条码技术小组提供
协方差cov与相关系数是什么?
二维随机变量(X,Y),X与Y之间的协方差定义为:Cov(X,Y)=E{[X-E(X)][Y-E(Y)]},其中:E(X)为分量X的期望,E(Y)为分量Y的期望。
协方差Cov(X,Y)是描述随机变量相互关联程度的一个特征数。从协方差的定义可以看出,它是X的偏差【X-E(X)】与Y的偏差【Y-E(Y)】的乘积的数学期望。由于偏差可正可负,因此协方差也可正可负。
当协方差Cov(X,Y)>0时,称X与Y正相关,当协方差Cov(X,Y)
?注意:
如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。
协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。协方差为0的两个随机变量称为是不相关的。
COV是概率论里的什么符合?
协方差
若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。
定义
E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。
协方差与方差之间有如下关系:
D(X+Y)=D(X)+D(Y)+2COV(X,Y)
因此,COV(X,Y)=E(XY)-E(X)E(Y)。
协方差的性质:
(1)COV(X,Y)=COV(Y,X);
(2)COV(aX,bY)=abCOV(X,Y),(a,b是常数);
(3)COV(X1+X2,Y)=COV(X1,Y)+COV(X2,Y)。
由协方差定义,可以看出COV(X,X)=D(X),COV(Y,Y)=D(Y)。
协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。为此引入如下概念:
定义
ρXY=COV(X,Y)/√D(X)√D(Y),称为随机变量X和Y的相关系数。
定义
若ρXY=0,则称X与Y不相关。
即ρXY=0的充分必要条件是COV(X,X)=0,亦即不相关和协方差为零是等价的。
定理
设ρXY是随机变量X和Y的相关系数,则有
(1)∣ρXY∣≤1;
(2)∣ρXY∣=1充分必要条件为P{Y=aX+b}=1,(a,b为常数,a≠0)